

The future of EV battery manufacturing

Dr Grzegorz (Greg) Ombach, Head of Disruptive R&T 17.05.2022

S-Curve Main Drivers: Technology, Policy, Markets

Source: https://www.caroli.org/en/the-technology-adoption-curve/

Trends Electric Passenger Vehicles

Range anxieties

Electric vehicles, top five consumer concerns % responding*

2019 2021

Battery driving range

Not enough places to charge

Costs are significantly higher than traditional vehicles

Charging takes too long

Charging the vehicle at home is not feasible

Source: AlixPartners The Economist

*In seven countries. Respondents select top three concerns

Range

> 500 km

Super Fast Charging 800 V // > 350 kW

Cost

material costs // volume // production costs

Lifespan and Safety

optimized cooling configurations

residual value,

Building Blocks

degrease in production costs // new production processes

Energy Density

cell to pack // cell to chassis // new formfactors // new cell chemistries

Second Life

refurbishment // alternative applications

Diagnostics

data management // digital production twin // digital product twin

Public: All rights reserved. Distribution to third parties allowed.

3

Horizontal Integration

Tier 1 as an interface between Cell Supplier and OEM

Source: Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars, Achim Kampker, Heiner H. Heimes, et al..

Vertical Integration Reduced role of Tier 1

Public: All rights reserved. Distribution to third parties allowed.

Future Trends for High Performance EV Batteries

System/Cell Design

Process

Chemistry

rces: Lucid, BYD, CATL, Samsung SDI, Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication H. Liua,b, X. Chengc, Y. Chongo

Future Trends for High Performance EV Batteries

Technology progress in chemistries

Anode	Electrolyte	Cathode	Volumetric energy density ¹⁾ [Wh/L]				
		Li-Sulfur	Ť	-			>1200
Li-Metal ³⁾ 'Anode-free" Li-metal coated	Solid (Oxide)	Ni-rich			QuantumSca	ape	>1000
	Solid (Sulfide)	Ni-rich			Solid Power		800-1000
Graphite/ Silicon ⁴⁾	Liquid	Ni-Rich: NCM910, NCM90-5-5, NCMA	@LGE	nergy Solution	NCMA		(700900)
		NCM811	CATL	Che LG Che	em		600-700
		Advanced NCA (<3.4% Co)	Panasonic V	SAMSUNG 삼성	ISDI		700-800
		NCA	Panasonic				600-700
		NCM622	CATL				350-500
		Adv. LFP					400-550
		Na	2015	2020	2025	2030	250-375

Next-Gen Technology (> 2025)

- Solid state: Introduction of oxide and sulfite-based, anode-free and with Limetal-coated anodes
- Hi-Si anodes even before
- LFP for lower range/A-/B-segment-, selected CV use cases, and as option
- Ni-rich tech. for high energy use cases
- NMx "in-between" NCM and LFP from cost and energy density perspective
- Mn-rich technologies as cheaper alternative for volume vehicles
 - Cell-to-Pack-technologies to in-crease energy density on system level

Source: Roland Berger

Battery Chemistries Development - Solid-State

Process Simplification > 40%

Cycle Time > 200%

Sources: Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives, Liguang W. Jun Li, Solid-State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry, Kyu-Nam J., Hyun-Seop S...

Public: All rights reserved. Distribution to third parties allowed.

Solid-State Li-ion Batteries Patent Landscape 2021

ces: Know Made

Linked in

Grzegorz (Greg) Ombach

Head of Disruptive R&T ◆ Senior Vice
President ◆ at Airbus
Airbus Group Inc. | INSEAD

View profile

https://www.linkedin.com/in/grzegorz-ombach/

https://www.linkedin.com/groups/1606827/

Public: All rights reserved. Distribution to third parties allowed.